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The problem of the possible regimes of the qualitatively different behaviour of solutions of weakly 
charged polyelectrolytes in theta- and good solvents are considered. For both cases we constructed the 
diagram of states with the following variables: polymer concentration in solution and concentration of 
added low-molecular weight salt. We also describe the behaviour of a polyelectrolyte solution in each of 
the regimes. To obtain the diagram of states it was necessary to solve the problem of the Debye-H Lickel 
screening by non-point-like objects. This problem is considered in the Appendix. 
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I N T R O D U C T I O N  

Great  attention has been paid recently to the experimen- 
tal and theoretical study of polyelectrolyte solutions ~ - 8 
From the theoretical point of view our understanding of 
the behaviour of such systems has been advanced con- 
siderably since (i) in refs 2 and 5 the concept of the so- 
called electrostatic persistent length was introduced; and 
(ii) in refs 1 and 4 the modern scaling theory of polymer 
solutions has been applied to polyelectrolytes. 

In refs 2-8 the main attention was devoted to the 
solutions of strongly charged polyelectrolytes, where the 
electrostatic m o n o m e r - m o n o m e r  interactions dominate 
the usual non-coulombic interactions. The opposite case 
of weakly charged polyelectrolytes (example: the un- 
charged chain with rare inclusions of charged monomers), 
where it is necessary to take into account also the non- 
electrostatic interactions of monomers,  has been studied 
to a much lesser extent (see refs 1 and 9-10). At the same 
time, it is clear that in weakly charged polyelectolytes, due 
to the presence of two qualitatively different types of 
interaction, many more interesting possibilities can be 
realized. For  example it was shown that the sufficiently 
poor salt-flee solution of weakly charged polyelectrolyte 
is unstable with respect to the process of the avalanche 
type condensation of counterions on the macromo-  
lecules ~°. This effect is due to the interplay of the 
electrostatic and non-electrostatic interactions and can- 
not be observed in the solutions of strongly charged 
polyelectrolytes. 

In this paper we shall consider the solutions of weakly 
charged polyelectrolytes (for the exact defi.nition of this 
not ion--see  the end of the following section. Using 
modern concepts of polymer theory ~ x we shall try to find, 
for such solutions, all the possible regimes of the 
qualitatively different behaviour and to obtain 
characteristic physical quantities in each of these regimes. 
A somewhat analogous consideration for strongly 
charged polyelectrolytes was performed by Odijk 4. As we 
shall see below, solutions of weakly charged 
polyelectrolytes have many specific features. 
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As in ref 10, we shall represent the macromolecule of a 
weakly charged polyelectrolyte as a flexible filament on 
which N interacting monomers are strung (the model 
'beads on a filament'12). We shall assume that the 
correlation between the adjacent monomers is Gaussian, 
with a mean-square distance a 2 between them. All the 
monomers interact by means of the usual non-coulombic 
forces of the Van der Waals type and, in addition to this, 
one monomer  among tr successive monomers along the 
chain carries a charge e (tr >> 1, since the polyelectrolyte is 
weakly charged). It is possible to introduce, in the usual 
way, the 0-temperature with respect to the non- 
electrostatic forces and to write down the estimation for 
the second virial coefficient of the non-coulombic in- 

T - O  
teractions of monomers 12: B ~ vz, where z -  0 , v --~ r 3, 

T is the temperature and r 0 is the interaction radius of the 
short-range Van der Waals forces*. We shall consider 
both the cases of salt-free solution (when the total number 
of counterions floating in the solution is equal to the 
number of charged monomers) and of the solution with 
some added amount  of 1-1 low-molecular electrolyte salt. 

In our model the state of the polyelectrolyte solution 
depends on three basic parameters: (i) polymer con- 
centration in the solution c, (ii) concentration of added 
salt, n, and (iii) the solvent quality with respect to the non- 
electrostatic interactions, which is characterized by the 
parameter r. In the next section we shall begin with the 
most fundamental case c = n = ~ = 0  (isolated macromo- 
lecule in salt-free theta solution), for which results have 
already been obtained 1. Then, subsequently, we shall 
consider the conformation of the polyelectrolyte macro- 
molecule in the solution with some added amount  of salt 
(n ~ 0, but, as before, c = r = 0). We shall then discuss the 
properties of the salt-free polyelectrolyte solution of finite 
concentration c in the 0-solvent (n = r = 0; c ~ 0). Using the 

* In ref 10 it is shown that in the case of weakly charged polyelec- 
trolytes the results obtained for the model just described can be easily 
reformulated for any other polymer chain model (in particular for the 
persistent model). 
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results of these two cases we shall then obtain the diagram 
of states with the variables n-c for the polyelectrolyte 
solution in the 0-solvent (r=0). Lastly, the analogous 
diagram of states for the good solvent region (~ >0) is 
considered and the behaviour of polyelectrolyte solutions 
in poor solvents (z<0) is discussed. The Appendix 
contains the solution of the problem of the Debye-Hfickel 
screening by non-point-like objects, which will arise in the 
section dealing with the concentrated salt-free polyelec- 
trolyte solution at the 0-temperature. 

It can be seen that in spite of the fact that for weakly 
charged polyelectrolytes the main interest is in the 
simultaneous accounting for electrostatic and non- 
electrostatic interactions, a large part of this paper is 
devoted to consideration of the theta-solution with 
respect to the non-coulombic interactions. This is be- 
cause (i) the diagram of state for the good solvent case 
appears as a natural generalization of the analogous 
diagram for the 0-solvent; and (ii) the problem of the 
diagram of states with the variables n ~ ,  even for the case 
when the non-electrostatic interactions of monomers are 
absent, has not yet been considered in the literature. 

VERY DILUTE SALT-FREE POLYELECTROLYTE 
SOLUTION AT THE 0-TEMPERATURE (c = n = z = 0) 

The conformation of a weakly charged polyelectrolyte 
macromolecule for this case has been considered 1'9'1°. In 
the case of a very dilute solution (c =0) it is possible to 
neglect the influence of counterions on the polyelectrolyte 
conformation; the charges on the macromolecule 
interact by means of the non-screened coulomb potential 
(see ref 1). This interaction leads to the fact that in the 
sense of the dependence of the mean-square end-to-end 
distance of the macromolecule, (RZ) ,  on N the confor- 
mation of the polyion is fully extended: ( R 2 ) ~ N 2 . 1  In 
order to describe this conformation in ref 1 it was 
proposed to use the following convenient terminology. 
The macromolecule is represented as a sequence of 
blobs (see Figure 1); each blob containing 9 successive 
charges along the chain, i.e. 9a monomers. The spatial size 
of the blob D is obtained from the condition that the 
energy of the electrostatic repulsion of two blobs which 
are adjacent along the chain is of the order T: 

e 2 
g Z - - ~  T (1) 

eD 

(e being the dielectric constant of the solvent). Then, on the 
one hand, the polymer chain inside the blob is only 
slightly perturbed by the coulombic interactions, i.e. we 
can write 

Figure I Polyelectrolyte conformation in the very dilute solution: 
the chain of  blobs 

e 2 

where we have used the notation u = ~ for the charac- 

teristic dimensionless parameter of the problem. Now it is 
possible to formulate more exactly the definition of a 
weakly charged polyelectrolyte: this is a charged macro- 
molecule which assumes the above described confor- 
mation of the chain of blobs (Figure 1) in the extremely 
dilute salt-free solution, with the number of charges per 
blog 9 much greater than unity: 9 >> 1 (for persistent 
model it is also necessary that the chain inside a blob 
contains a large number of persistence lengths1°). 

VERY DILUTE POLYELECTROLYTE SOLUTION 
WITH ADDED SALT AT THE 0-TEMPERATURE 
(c=~=0,  n#0)  

Let us now consider the macromolecular conformation in 
the presence of some added amount of salt to the solution 
(1-1 electrolyte of concentration n). 

In this case coulombic interactions of the charged 
monomers are screened by the ions of the added salt, the 
corresponding Debye screening radius ro being equal to 

1 
ro .~ (uan)l/2 . (5) 

Since at n =~ 0 the value of  ro is finite, at large values the 
macromolecular conformation is no longer as described 
in the previous section; the chain of blobs is no longer 
fully extended in the sense of the asymptotic dependence 
of ( R  2) on N. 

The conformation of a macromolecule of a strongly 
charged polyelectrolyte in a salt solution with the screen- 
ing radius ro was considered in refs 2 and 5. It was shown 
that in this case the macromolecular pro~rt ies  can be 
described in terms of the persistent length l, which is the 
sum of the bare persistent length l of the corresponding 
uncharged macromolecule and of the so-called elec- 
trostatic persistent length I e 

D ~ a ( g a )  1/2 (2) 

and, on the other hand, the system of blobs forms a fully 
extended conformation of longitudinal size 

L~ N---D (3) 
9a 

From equations (1)-(3) we obtain: 

(71/3 a f t 2 / 3  Naul  /3 
9"" " D,,-, ul/--~- " L,,+ a z / ~  (4) U2/3  ' , , 

1 - 1  e2r2° 
T=I+ e -  + 4 ~ 2 ,  (7) 

where A is the distance between the charges e on the chain 
of a strongly charged polyelectrolyte. The appearance of 
the electrostatic persistent length is due to the extra 
stiffening of the chain brought about by the electrostatic 
interactions of monomers, which are close to each other 
along the chain. However, in the presence of salt this 
stiffening is not sufficiently large to cause the fully 
extended conformation, as in the previous section. 
Equation (7) is valid only if the linear charge density of the 
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polyelectrolyte chain is not sufficient to induce the 
counterion condensation. 

If the polyelectrolyte is weakly charged, then equation 
(7) cannot be used directly. Nevertheless, the analysis of 
refs 2 and 3 can be easily generalized for this case, if it is 
applied to the chain of blobs. In this context equation (7) 
will still be valid if the value of e is replaced by 9e, the 
charge of one blob, and the values of A and I are replaced 
by D, the distance between adjacent blobs**. Thus, we 
obtain: 

g2eZr2 _ rg r2o 
" f ~ , , D + ~ D + ~ .  (8) 

The last equality follows from the fact that the macro- 
molecular conformation can be represented as a sequence 
of blobs only at ro > D, and if this is the case the second 
term in equation (8) is much larger than the first term. At 
re <D extra stiffening of the chain due to electrostatic 
interactions is nonessential and the notion of electrostatic 
persistent length cannot be introduced. 

Taking into account the above considerations, let us 
describe the main regimes of the qualitatively different 
behaviour of an isolated polyelectrolyte chain at z = 0. At 
n = 0 we have an elongated conformation as described in 
the previous section. Clearly, in this case 

( R 2 )  ~ L 2 ~ N2a 2u2/3 
0.4/3 . (9) 

As n increases, the persistent length of the chain of blobs 
(equation (8)) decreases. However, until l>  L, the mean- 
square end-to-end distance is determined by equation (9). 
The persistent length becomes equal to the contour length 
of the chain of blobs 

T=L at re ~N1/2a. (10) 

At ro<N1/2a ~<L, the contour length of the chain of 
blobs contains several persistent lengths, thus the value 
of (R E ) is given by 

/kt~2,,2/3 
(11) 

As we add extra salt (n increases), equation (11)will hold 
until the number of persistent lengths per macromolecute 
increases to such extent that the excluded volume effects 
become essential. This will happen when the excluded 
volume parameter in the polyelectrolyte coil, Z 12 
becomes the order of unity. Since the chain of blobs 
can be represented as a persistent chain of width re 3 and of 
the persistent length r, we can write 

['L\ 1/2 ro~ N1/2a 2 0 .2/3 

Z ~ k T )  ~ - ~  ro2 //1/3 (12) 

** Weakly charged polyelectrolyte differs from strongly charged 
polyelectrolyte in the following respect: in the chain of blobs large 
fluctuations in the transverse direction are possible. For example for 
transverse dimensions of the polyelectrolyte coil considered in the 
previous section we have Lj.~(N/otr)I/2D. To perform the analysis, 
which is analogous to refs 2 and 3, it is necessary to take an average, with 
respect to these fluctuations. After this averaging the chain of spheres 
becomes similar to the chains considered in refs 2 and 3. 

(see ref 13). Excluded volume effects become pronounced 
at Z > 1, i.e. at 

0-1/3 
rn <aN1/4u~76. (13) 

If inequality (13) is fulfilled, we have instead of equation 
(11) 

(R2)~LTZZ/5~N6/Sro6/SuS/15a4/50. -16/15 (14) 

Finally, as the concentration of added salt, n, further 
increases, the Debye radius, ro, can become of the order of 
the blob size, D. At ro < D the notion of a sphere cannot 
be used and the value of (R 2) can be calculated following 
the usual methods of the excluded volume theory 12 (in 
this case the excluded volume is due to the screened 
coulombic interactions of charged monomers). This gives 

//2/5 
( R 2 ) ~ N6/5~r4o/4 a6/5" (15) 

Equation (15) is valid provided re is much larger than the 
microscopic scale (~  a). 

Now let us summarize all the possible regimes of 
qualitatively different behaviour for a weakly charged 
polyelectrolyte chain at c = z = 0: 

I re> N1/2a~longated chain of blobs (see equation 
(9)). 

0.1/3 
II N1/2a>ro>N1/aau~TV----chain of blobs forms the 

coil without excluded volume (see equation (11)). 
u~6 qa2/3 

III N1/4a re > D = u1/3 --chain of blobs forms the 

coil with excluded volume (see equation (14)). 
IV re < D chain of blobs disappears and the macro- 

molecule takes the conformation of a usual coil with 
excluded volume (see equation (15)). 

The four above mentioned regimes are shown at the n- 
axis in Figure 2. The value of re is connected with the 
concentration of added salt according to equation (1 5). 

CO N CEN TRA TED  SALT-FREE 
POLYELECTROLYTE SOLUTION AT THE 0- 
TEMPERATURE ( n = z = 0 ,  c:#0) 

Suppose now that we have a salt free solution at z = 0  and 
that we increase the polymer concentration in the so- 
lution, c. As c increases, the number of counterions 
increases also, since the solution remains globally neutral. 
These counterions screen the interactions of charged 
monomers. Thus in this case we have a finite Debye radius 
re as well as the finite persistent length ~8)* of the chain of 
blobs. 

Let us consider, first of all, the concentration region 
where although polyelectrolyte coils overlap strongly, the 
volume fraction of spheres in the solution is still small: 

ya 
c < < ~ .  In this region we can naturally introduce the 

* In ref 8 it was shown that even in the concentrated solution, the 
degree of flexibility of the chain of blobs can still be determined by 
equation (8). Naturally the notion of blobs itself can only be applied 
when they do not overlap, i.e. at c<ga/D 3. 
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Figure 2 Diagram of states for the solution of weakly charged 
polyelectro lytes 

characteristic distance ~, the average distance between 
two neighbouring chains of blobs. Since the volume 
fraction occupied by the blobs in the solution is 
]~cD3/,q6, w e  have 

D a f t  113 1 
~ , 1 , ' 2 [  ~ b/l/6 (Cl~/3) 1/2" (16) 

In refs 4 and 8 it was shown that ¢ is the correlation 
length for the regime under consideration. What is the 
relation between ro and ~? Of course the behaviour of the 
solution would be more simple if these two lengths are of 
the same order of magnitude: ~ ~ to. 

However, if we take into account that the average 
counterion concentration in the salt-free solution is equal 

C 
to and use for rD the formula analogous to equation (5), 

cr 
we obtain 

G ~1/2 t~,. 1/ '6 -112~ 
rO~kU~C/ ~u~7~ ~y . (17) 

For weakly charged polyelectrolytes 9>>1, thus we 
conclude that, in the case equation (17) is valid ro >> ~. 
We note also that for strongly charged polyelectrolytes 
g ,-, 1 and thus, as it was shown in refs 4 and 8, rD "-, ¢. 

However a more detailed analysis shows that equation 
(17) is not valid for the case of weakly charged polyelec- 
trolytes. It was deduced using the assumption that the 
screening is due to the monovalent point-like charges of 

c 
concentration ~-, which are not connected in the chain a4. 

At the same time, in the polyelectrolyte solution in 
addition to the point-like counterions, there are charged 
monomers, which can also contribute to the screening. 
The fact that these charges are connected in the chain 

changes, significantly, the expression for ro for the case of 
weakly charged polyelectrotytes. 

In the case of non-overlapping blobs under con- 

sideration, c << ~3, the screening is due to the counterions 

and the chains of blobs. At the scale ~rD the chains of 
blobs can be represented as elongated rods (the per- 
sistence length of the chain of blobs is much larger than 
ro (see equation (8)). Thus we come to the problem of 
screening by the rod-like charged objects. This problem is 
considered in the Appendix, where it is shown that, 
provided the Debye H/ickel approximation is valid, 
screening by rods is much more effective than the 
screening by point-like charges with the same volume 
charge density. For a solution of rods with the linear 
charge density p and the volume density of charges on the 
rods q (rods float in the oppositely charged, homo- 
geneously distributed 'background', so that globally the 
system is neutral) the Debye radius is equal to (see 
Appendix) 

/ / sT '~  1,3 
ro t ) .81 

Equation (18) has a simple qualitative interpretation. 
We can recall that according to the Debye-H/ickel 
theory 14 if the screening is due to the point-like charges of 
concentration c and the valency Z the corresponding 
Debye radius is 

r ° -  \ e ~ /  ~ \ t l e Z  / " (19) 

Let us calculate the effective value of Z for the solution of 
rods with the Debye radius rD. If two charges on the rod 
are separated by a distance smaller than ro, from the point 
of view of the screening they can be represented as a single 
charge of double valency. If the distance between the 
charges is larger than rD, they take part in screening 
independently. Consequently, for the calculation of the 
Debye radius in the solution of rods we can use equation 
(19), substituting as the charge eZ  of an elementary 
screening unit the value pro, the charge of the portion of 
the rod of length ro. As a result we obtain directly 
equation (18). 

In the application to polyelectrolyte solution equation 
(18) yields 

0.4/3 ~1,'3 
r 0 ~ kb/2 /3~)  . (20) 

Comparing equations (16) and (20) we can see that ro << ~, 
i.e. the screening due to the other macromolecules is much 
more effective (i.e. it leads to the smaller Debye radius), 
than the screening by the point like counterions. 

However, equation (20) also does not give the correct 
expression for the screening radius of the polyelectrolyte 
solution. The reason for this is that at r o << ~ the condition 
of validity of the Debye-Hfickel approximation is not 
fulfilled. This approximation is valid only at ro >> ¢ when, 
within the screening radius ro, there are many screening 
objects, i.e. many other macromolecules. 

Taking into account the above considerations it seems 
more natural to assume that in semidilute solutions of 
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non-overlapping blobs the Debye radius ro and the 
correlation length ~ are of the same order of magnitude: 
ro ~ ~ ~ h e  same relation as in the solution of strongly 
charged polyelectrolytes 4'8. In actual fact, since the 
screening is contributed to, not only by the counterions, 
but also by the neighbouring macromolecules, the value 
of rD decreases in comparison with the value ro>>~ 
defined by equation (17). However the decrease in ro, due 
to the neighbouring macromolecules, cannot be very large 
because, at the scales smaller than ~, this type of screening 
is ineffective. Thus ro cannot become smaller than ~, the 
value of rv <<~ defined by equation (20) cannot be 
reached. From this it follows that the decrease in ro will 
stop at the level ro ~ ~. 

With the help of this result we can calculate any 
conformational characteristics of the semidilute solution 
of non-overlapping spheres. For example, the persistence 
length of the chains of blobs is equal to 

~2 
T~,.~ ~ l (21) 

D D ca 2" 

For the mean-square end-to-end distance of a polyelec- 
trolyte chain ( R Z ) ~ L T  (volume interactions in this 
regime are always screened, since 7">> ~) we obtain 

/A 1/3 1 
(R 2) ~ LT~ N a Z ~  ca 3. (22) 

The problem of screening by the Gaussian chains is also 
considered in the Appendix, where it is shown that due to 
the connectivity of charges in the chain, the degree of 
screening always increases (i.e. ro decreases) in com- 
parison with the case of disconnected charges of the same 
volume density. The expression for ro obtained in the 
Appendix can be qualitatively interpreted as follows. 

Since in the region c > ~ there is no influence of charges 
v 

in the macromolecular conformation, we can, as in the 
neutral solution of concentration c in the 0-solvent, 

introduce the correlation length ~ ~ 1 ~ ~ s . Clearly, elem- 
c a -  

entary screening units forming the Debye radius ro are the 
parts of macromolecules of dimension ~ (at larger scales 
the correlation disappears and the charges connected in 
the chain can no longer be represented as one elementary 
screening object). This means that in this case, equation 

~2 1 
(19) for ro is still valid, with the valency Z ~ ~ 

a - o  c 2 a 6 o  - 

being the charge of part of the macromolecule of 
dimension ~.. Thus we obtain (see also Appendix): 

_(8,T "~1,'2 / ~!_,[, ~1'2 o-(Ca3)I 2(1 
(24) 

Equation (22) is valid only at concentrations higher than 
the concentration c* at which L ~ T. At the concentrations 
c < c* the solution is dilute, in this regime macromolecules 
take the elongated conformation described earlier. 

Using equations (4) and (21) we obtain 

1 0.2/3 
c * a  3 (23) N u 1:3" 

The concentration c* is still much larger than the overlap 
N 

concentration, c ~ L3  of the elongated coils of the very 

dilute salt-free solution. 
9o- 

Until now we have only considered the case c << Dx of a 

small volume fraction of blobs in the solution. It should 

be noted that at c ~ - s  T ~ r ~ D .  At C> D~ blobs 

begin to overlap. In this region the influence of the 
electrostatic interaction on the macromolecular confor- 
mation is negligible and (R  2) ~ N a  2. 

Let us now calculate the value of the Debye radius in 

the region c > ~ s  of overlapping blobs. We shall also 

1 
assume that c << ~ ,  i.e. that the polyelectrolyte solution is 

not too concentrated. In this case we come to the problem, 
which is in a sense analogous to the problem described 
above, of the screening by rods: the screened potential is 
formed by the point-like counterions and by the non- 
point-like objects; in our case by the charge Gaussian 
chains of other macromolecules. 

The concentration dependence of the Debye radius in this 
regime is unusual: ro~c 1'2. The increase of ro with 
concentration is connected with the rapid decrease of c~ as 
a function ofc (and, consequently, with the decrease of the 
valency of elementary screening objects). The Debye 
radius will increase with concentration according to 
equation (24) until Z >  1. At concentrations larger than 

1 
ca3 ~ o~.2, when the part of macromolecule of dimension 

contains on the average less than one charge (Z <  I) we 
must use for ro the usual formula: 

\ rle / \ha, ' /  (25) 

In conclusion, we list the possible regimes for weakly 
charged polyelectrolyte solutions at n = z = 0 :  

1 0.2;2 
I c < d * ~ N a  3 ul/3 ---elongated chain of blobs. 

go- 
V c* <c  < ~x semidilute solution of the chains of 

blobs with finite persistent length: ro ~~ (see equations 
(16), (21), (22)). 

9o- 1 
VI b~<C~<a3 solution of Gaussian chains; 

1 
( R Z ) ~ N a  2. At c < ~  the value of rD is given by 

1 
equation (24); at C>a3o-1/2 by equation (25). 

The above mentioned regimes are shown in Figure 2 (c- 
axis). 
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DIAGRAM OF STATES FOR THE SOLUTION OF 
WEAKLY CHARGED POLYELECTROLYTES AT 
THE 0-TEMPERATURE 

Now we have all the necessary information to obtain the 
diagram of states for the solution of weakly charged 
polyelectrolytes at r = 0 (i.e. in the absence of the nonelec- 
trostatic interactions) with the variables: concentration of 
the added salt n and polymer concentration in solution c. 
This diagram of states is shown in Figure 2. It was 
constructed having in mind the well-known diagram of 
states for a neutral polymer solution with variables ~--c 
obtained in ref 15. The boundaries of the regimes of 
qualitatively different behaviour have the same meaning 
as that in ref 15: they are the lines of smooth crossover, but 
not of the abrupt phase transition. 

Regimes I VI were described in detail in the previous 
two sections. Regimes I-IV correspond to the solution of 
non-overlapping macromolecules at various 
concentrations of added salt. In regimes I, V, VI the 
influence of the added salt on the macromolecular 
conformation is negligible (see previous section). The 
boundary of the regions I and I' corresponds to c ~ N/L  3, 
the overlap concentration for the spheres of radius L (L in 
the length of the elongated conformation of regime I). 
Region VI differs from region VI' in the expression for the 
Debye radius (see equations (24) and (25)). 

Boundaries of the regions I IV, on the one hand, and 
the regions I', VII-IX, on the other hand, correspond to 
the overlap concentration of macromolecules, i.e. to the 
transition from the dilute to the semidilute solution: 

0 .2 0"2 u 5/2(#,la3)3i2 
ci l a  3 ~ N2 u " CII v l l a  3 N1; 2 

Ciil v i n a  3 ~ 0 . 2 4 i 5 ( n a 3 ) 9 i l ° u - 3 / l ° N - 4 / 5  ; 
(26) 

Clv ix a3  ~0"6!5(na3)3/SN4/5 

Thus regions VI I qX  are the regions of semidilute so- 
lutions corresponding to the dilute regimes II-IV. In 
region VII we have overlapping chains of blobs without 
volume interactions; in region VIII, due to the volume 
effects, there is some swelling of the overlapping chains of 
blobs; in region IX the screening is so pronounced that 
the notion of blobs cannot be introduced (re < D). Thus 
the electrostatic interactions lead to the usual excluded 
volume effect. If, in this latter region the concentration c is 
further increased we come to the region X where, due to 
the high concentration, volume effects are completely 
screened. In this region we have simply the solution of 
Gaussian chains with ( R 2 ) ~ N a  2. The expressions for 
(R 2) in regions VII-IX are as follows 

(Re)vii Nu-1/3 (R2)vui,,~(au)Z/Sn_3/SN6150-16/5; 
na0"4/~; 

(27) 
_(a2N3) 

(R2)IX \ ~ , ]  

The boundaries of the regions VII-X correspond to: 

(ca3)Vll  vi i i  ~ (ha3)0- 32/9u29/18 ; 1 
#iVlll i x a  3 ,~ 0.413ul/3 

(28) 

1 
(na3)ix X ~ (ca3)1t4,30.3/17 . 

Finally, the difference between domains VII and V; X 
and VI is in that in the regions VII and X the screening 
is determined by the ions of the added salt, while in the 
regions V and VI it is due to the counterions of 
macromolecules themselves. The boundaries of the re- 
gions V-VII and VI-X can be determined from a 
comparison of the expressions for rv in these regions: at 
the boundaries these expressions must give the same 
values. We therefore obtain: 

0-4,'3 1 
¢V Vlla3 ~ n a 3 ~  Cvt x a 3 ~ -  " cVl x a 3 ~ n a  3. 

U ' ~ 0 .ha  3 ' 

(29) 

It should also be noted that the obtained diagram of 
states, as well as the majority of the formulae above, can 
also be applied after slight reformulation for strongly 
charged polyelectrolytes. In this case we shall have on the 
diagram of states only the regimes I III, V and VII-VIII. 

DIAGRAM OF STATES FOR THE SOLUTION OF 
WEAKLY CHARGED POLYELECTROLYTES IN 
THE PRESENCE OF NON-ELECTROSTATIC 
INTERACTIONS 

Firstly let us consider the properties of the solution of 
weakly charged polyelectrolytes at temperatures higher 
than the 0-temperature (z > 0) when the non-electrostatic 
volume interactions of monomers are repulsive, their 
second virial coefficient being of order B ~ w (see earlier). 
For simplicity we shall restrict ourselves to the case of a 
flexible polymer chain (v~a3) 13 and of a very good 
(athermal) solvent r ~  11~, then B ~ a  3. In this case the 
general form of the diagram of states of Figure 2 remains 
practically unchanged (with one exception--see below). 
However the boundaries of different regimes and the 
behaviour of characteristic quantities (such as (R2)) in 
these regimes will, of course, change significantly. The 
reason is that on the one hand, instead of equation (2) we 
should now use the relation: 

D~a(g0.) 3/5 (30) 

and, on the other hand, in some regimes it is necessary to 
take into account the swelling of macromolecules due to 
the usual non-electrostatic interactions. Below we list the 
expressions for the boundaries of different regimes of the 
diagram of states in the case under consideration, as well 
as the expressions for (R 2) in each of the regimes. 

0.12/7 0-2/7 U4/7 
(ca3)I  I ' ~ T N - 2 ;  (ca3)r v~u~7~/vS-1; ( c a3 )v  v1 ~ T / 7 ;  

1 
(ca3)vl_vr ~ 0"-4/5, (na3)i n ~ Nu6/Va2/7; (na3)ii IlI 

1 1 
ul /ZN1/2as /7;  (na3)l l l- lV ~ ~ ;  (ca3)i i  vii 

[~,q3~9/1 otr54/35 
(na3)3/20"15/Tu3/TN-l/2; t tca3)Ill viii ~ ~ " ' ~ ~  ! ~ -; 

(ca3)lV_lX ~ N -  4/5; (ca3)vli viii "~ U41/420"199/42(gla3)9/2; 
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ca 3 
(naa )v  vii ~ ~ T T ;  

(ca3)vl  x ~ ( n a 3 a ) -  4; (ca3)vr  x ~ (na3)w x; 

( R2 )1 ~ ( R  2 ) 1 '  ~ N 2 a  2t7 - 8/7b/4/7; 

a 2 
( R I I )  ~ ( R 2 I I )  ~ NtT- l ° /Vu-2 /7 .  

( R 2 ) I I I  ~ N6/SaZ(na 3) - 3/50.36/35ul 8/35; (R2v) ~ N6 /5a2 ;  

( R Z ) v ~ a 2 ( c a 3 )  1No- 6:7u10/7 ; ( R 2 1 ) ~ ( c a 3 ) - l / 4 a 2 N ;  

( R2 ) v r  ~ N a2 ; ( R  2 )viii  ~ a 2b16/5ffl °/7(n(23)7/2°(ca 3) - 3/10., 

( R 2 ) l x ~ ( c a  3) 1/4a2N. 

(31) 

Equations (31) were obtained in a straightforward man- 
ner, combining the considerations of the previous sections 
of this paper with the results of the conventional theory of 
polymer solutions with excluded volume. The only com- 
ment worthy of making here is that in this case there is no 
distinction between the regimes IX and X because in both 
these regimes the swelling is due to the strong excluded 
volume effect, caused by usual interactions, which prevail 
over electrostatic interactions. 

In conclusion let us make some comments concerning 
the structure of the polyelectrolyte solution at z < 0, i.e. in 
the region, where the binary nonelectrostatic interactions 
of the monomers are mainly attractive. In this case if we 
are inside the regions I-III ,  V or VII VIII of the diagram 
of states, where the conformation of the macromolecule of 
a weakly charged polyelectrolyte can be described in 
terms of blobs, counterions must undergo the avalanche- 
type condensation on the chains of blobs 1°. In a 
sufficiently concentrated solution this may lead to the 
precipitation of the solution. 

If we have a weakly charged polyelectrolyte gel instead 
of a weakly charged polyelectrolyte solution, the 
avalanche-type counterion condensation must lead to the 
abrupt contraction of the gel. We think that it is this fact 
that is responsible for the so-called collapse of polyacryl- 
amide gels, which was observed in a series of recent 
experiments 16- 20. This problem will be considered in a 
separate publication. 
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APPENDIX: DEBYE-HIJCKEL SCREENING BY 
N O N - P O I N T - L I K E  OBJECTS 

In this appendix we shall consider the problem of 
calculation of the Debye radius, to, in the case of screening 
by non-point-like objects (instead of point-like ions as in 
the usual form of the Debye-Hiickel theory). We shall 
have in mind, first of all, the problems of screening by rigid 
rods and by Gaussian coils, which are important for the 
consideration in this paper. Rods are rigid objects, 
whereas Gaussian coils can change their form easily, i.e. 
they are 'soft'. 

Below we shall present a somewhat simplified de- 
rivation for rigid objects; then, taking as an example the 
problem of screening by Gaussian coils, we shall obtain a 
more general formula for ro in the solution of non-point- 
like objects. 

Let us assume that we have a solution of charged 'rigid' 
particles of arbitrary shape floating in the homogeneously 
distributed oppositely charged 'background', so that the 
whole system is electroneutral. Let us put a trial point-like 
charge e at the origin and let us see how the coulombic 
potential from this charge will be screened by the particles 
of the solution. The position of each particle can be 
assigned by the coordinate of its centre of mass r and by 
the unit vector of its orientation z. If the particle is placed 
in some self-consistent potential field 4~eff(r), its energy in 
this field can be written as 

c~(r,z) = f t~ef  f(r')p(r' -- r,z)dar ', (A1) 

where p(r' - r,z) is the charge density on the particle with 
the orientation ~ at the point separated from its centre of 
mass by the vector r' - r. Naturally, if the end of the vector 
r - r '  is not within the particle then p ( r ' - r , z ) =  O. 

The Poisson equation for the self-consistent screened 
potential ~Pe:: can be written in this case in the usual form 

e 4~ 
A(oef f = - 4~-6(r)----(/t(r), (A2) 

8 g, 

where #(r) is the average volume charge density at a 
distance r from the trial charge. It is easy to understand 
that 

('(' ~tr',,) , d D ~  3 ,  
Mr) = CoJJ (e ~ - 1)p(r-  r , z ) ~ - d  r ,  (A3) 

where C O is the average concentration of screening objects 
and df~ is the element of the spatial angle. Equation (A3) 
is due to the fact that, as soon as we are considering the 
non-point-like particles, the charge at the point v may 
originate from the particle, whose centre of mass is 
situated at r' ~ r. 

In the Debye-Hfickel approximation we can linearize 
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the integrand of equation (A3). We obtain: 

e 4nC o ( (~ ' r '~"  "r r'~ dD~da ' AdGyI=-4n 6 ( r ) + ~ - ] I  ~ , )"t - , ~ r. 
d d  

(A4) 

Performing Fourier transformation of equation (A4) we 
arrive at 

e 
kZ~p¢y:(k,~) = 4n 

8 

4~-° IO(k,~)p(k,~)d~ n~ . 
8 1  J °,-71: 

(AS) 

In terms of Fourier-transforms, equation (A1) can be 
written as 

+(k , z )  = c ~ f f ( k ) p (  - k,'c) = ~ e f f ( k ) p * ( k , ~ ) ,  (A6) 

where the asterisk denotes a complex-conjugated value. 
From equations (A5) and (A6) we finally obtain: 

4ne/e 

q~eff(k)- k 2 +4~e~TO f (A7) 

Equation (A7) gives the solution of the problem of 
screening by rigid non-point-like objects. In the particular 
case of point-like objects of valency Z p(r,z)= Zeb(r) we 
return to the usual Debye-Hiickel formula. Clearly, the 
funcion p(k,z) generally depends on k, so that the 

screened potential differs from le-r/r° However if we 
r 

denote the minimal scale, at which the screening of the 
coulombic potential of the trial charge becomes essential, 
as the Debye radius*, we can, in turn, write down the 
following equation for rD 

r f4nCo ~, ,k.r,,.,d~-'/2[ 
o - k w y , t ,  ,i 1 

k = - -  
rD 

(A8) 

When the screening objects are tong thin rods (length l, 
linear charge density p), we have 

4ne/a 
(Peff(k) = 2n2C 0 21. (A9) 

k 2 + ~ P  

To determine ro, we must equate two terms in the 
1 

denominator of equation (A9) and replace k with --. 
YD 

Taking into account that Copl = q (tl is the average volume 
charge density on the rods in the solution) we arrive at 
equation (18) in the main text. 

Clearly, equations (A9) and (AS) are valid only in the 
framework of the Debye-Hfickel approximation, i.e. only 
if it is possible to perform the linearization in equation 
(A3). As usual, this procedure is valid if in the volume r~ 

* It is in this sense that the notion of the Debye radius is used in the 
main text. 

there are many screening objects. If this is the case, the fact 
that we are considering the screening of the potential of 
the point-like trial charge and not of the object, which 
would be analogous to the screening objects, is also 
nonessential. 

Another assumption used in the above derivation is the 
following: rods were considered as moving independently 
in the potential ~oe: :, i.e. their correlations were not taken 
into account. We shall see below what are the limits of 
validity of this assumption. 

Now, instead of the solution of rigid objects, let us 
consider the solution of charged flexible Gaussian macro- 
molecules, spatial distance between two adjacent along 
the chain charges being equal to b. Let us look once more 
at how the coulombic potential from the point-like 
charged particle put at the origin will be screened in such a 
solution. It is well-known ~1 that if some potential field 
U(r)(] UI << T) is acting on the monomers, the change of 
monomer concentration at point r,bc(r), can be written in 
the form 

,f fie(r) = -- ~a 3 S ( r -  r')U(r')dar ', (AIO) 

where S(r -r ' )  is the so-called response function of the 
concentrated polymer solution. Using equation (A10), the 
Poisson equation for this case takes the form 

Ac~¢yy= _ 4 n e  6(r) 4he21' 
+ e ~ x I S (  r - r')ffgeff(r')dar '. 

*d 

(All) 

Rewriting equation (A 11) in terms of the Fourier trans- 
forms, we obtain 

4ne/e 
(fief f ( k ) =  4he2 , (A12) 

k ~ + ~ s ( k )  

where S(k) is the Fourier-image of the response function. 
It is well known TM that if we have a concentrated 
polymer solution with the correlation length ~, the 
function S(k) can be expressed approximately through the 
response function of an isolated chain So(k ) as follows 

k2~ 2 

S(k) = So(k)] + k2~2. (A13) 

At the same time, for So(k) we have 11" 

cb  3 
S O(k) = k2b2. (A 14) 

Substituting equations (A13) and (A14) in equation (A12) 
and equating two terms in the denominator of equation 
(A12), we obtain 

( e T b 2 ~  1'2 

ro ~\eZc~-~j . (A15) 

Equation (A15), when rewritten in the notation of the 4th 
section in this paper, gives equation (24) used in the main 
text. 

Equation (A12) gives the most general expression for 
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the screened potential in the solutions of non-point-like 
objects. Equation (A7) obtained for rigid objects under the 
assumption of the absence of correlations, follows from 
equation (A12) if S(k)is replaced by So(k), the'Fourier- 
transform of the response function for isolated object, 
since 

I (' 2dQT 
So(k)~~J[p(k,~)l ~-~. (A16) 

Thus, the derivation of the first part of this Appendix 
(equations (A1)-(A9)) and equation (18) of the main text 
are valid if (i) the Deybe-Hfickel approximation can be 
applied and (ii) rD ~ ~. These two requirements are often 
contradictory (see, for example, 4th section of this paper). 
Requirement (ii) can easily be relaxed, if we use the more 
general equation (A12) instead of equation (A7). However, 
we do not need such a modification in the context in which 
we use equation (18) in the main text. 

From equation (A13) it can be seen that the substitution 
1 S(k)---~So(k ) is valid only at Ikl >~. In the application to the 

problem of calculation of the Debye radius this procedure 
can be justified only if ~ >~ r~. 
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